开发数据仓库模型的方法学(书摘备查)

开发数据仓库模型的方法学包含两组八个步骤,前四个步骤着眼于确保数据仓库模型满足业务需求,后四个步骤则集中考虑了影响数据仓库性能的折中因素。

 

步骤

动   作

目   标

描   述

1

选择感兴趣的数据

决定包含范围,减少载入时间,减少存储需求

决定在模型中要包含的数据元素和考虑存档其他将来可能使用的数据

2

在键中增加时间

提供历史数据

在键中增加时间成分,并解决因模型从“时间点”变换到“时间段”引起的关系中的结果变化

3

增加派生数据

保证业务一致性和改善数据交付性能

计算和存储经常使用的或要求一致性算法的数据

4

调整粒度

确保数据仓库在正确的细节级上

决定期望的细节级,平衡业务需求、性能和隐含的代价

5

汇总数据

简化数据交付

根据数据集市中的使用来汇总数据

6

合并实体

改进数据交付性能

如果经常使用的数据有相同的键和共同的插入模式,则将它们合并到一个实体中

7

创建数组

改进数据交付性能

在满足适当的条件下,在属性实体领域创建数组

8

分离数据

通过分离实体,平衡数据获取性能和数据交付性能

决定插入模式,并且如果查询性能不会显著降低则分离数据

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页