触类旁通Elasticsearch:搜索

目录

一、搜索请求的结构

1. 确定搜索范围

2. 搜索请求的基本模块

3. 基于请求主体的搜索请求

4. 回复的结构

二、查询和过滤器

1. match

2. term

3. query_string

三、复合查询

1. bool查询

2. bool过滤器

四、其它查询和过滤器

1. range查询和过滤器

2. prefix查询和过滤器

3. wildcard查询

4. exists过滤器

5. missing过滤器

6. 将任何查询转变为过滤器

五、为任务选择最好的查询


《Elasticsearch In Action》学习笔记。

        ES的搜索请求执行流程如图1所示。图中索引包含两个分片,每个分片有一个副本分片。在给文档定位和评分后,缺省只会获取排名前10的文档。REST API搜索请求被发送到所连接的节点,该节点根据要查询的索引,将这个请求依次发送到所有的相关分片(主分片或者副本分片)。从所有分片收集到足够的排序和排名信息后,只有包含所需文档的分片被要求返回相关内容。这种搜索路由的行为是可配置的,图1展示的默认行为,称为查询后获取(query_then_fetch)。

图1 搜索请求是如何路由的

 

一、搜索请求的结构

        ES的搜索是基于JSON文档或者是基于URL的请求。

1. 确定搜索范围

        所有的REST搜索请求使用_search的REST端点,既可以是GET请求,也可以是POST请求。既可以搜索整个集群,也可以通过在搜索URL中指定索引或类型的名称来限制范围:

# 无条件搜索整个集群
curl '172.16.1.127:9200/_search?pretty'
curl '172.16.1.127:9200/_all/_search?pretty'
curl '172.16.1.127:9200/*/_search?pretty'

# 无条件搜索get-together索引,类似于SQL中的select * from get-together;
curl '172.16.1.127:9200/get-together/_search?pretty'

# 在ES6中已经废弃了type的概念,所以功能同上
curl '172.16.1.127:9200/get-together/_doc/_search?pretty'

# 无条件搜索get-together、dbinfo两个索引
curl '172.16.1.127:9200/get-together,dbinfo/_doc/_search?pretty'

# 模糊匹配索引名称,包含get-toge开头的索引,但不包括get-together
curl '172.16.1.127:9200/+get-toge*,-get-together/_search?pretty'

        和DB类似,为了获得更好的性能,尽可能地将查询限制在最小数量索引。每个搜索请求必须发送到所有索引分片(类似于DB中的全索引扫描),发送到越多的索引,就会涉及越多的分片。

2. 搜索请求的基本模块

        类比SQL查询语句:

select ...
  from ...
 where ...
 order by ...
 limit ...

        where <-> query
   select ... <-> _source 
  size + from <-> limit
     order by <-> sort

        搜索请求的基本模块如下:

  • query:配置查询和过滤器DSL,限制搜索的条件,类似于SQL查询中的where子句。
  • size:返回文档的数量,类似于SQL查询中的limit子句中的数量。
  • from:和size一起使用,from用于分页操作,类似于SQL查询中的limit子句中的偏移量。如果结果集合不断增加,获取某些靠后的翻页将会成为代价高昂的操作。(SQL中延迟关联的思想应该也可用于ES,先搜索出某一页的ID,再通过ID查询字段。)
  • _source:指定_source字段如何返回,默认返回完整的_source字段,类似于SQL中的select *。通过配置_source,将过滤返回的字段。
  • sort:类似于SQL中的order by子句,用于排序,默认的排序是基于文档的得分。

        下面看一些简单的例子。
(1)返回第2页的10个结果

# ES的from从0开始
curl '172.16.1.127:9200/get-together/_search?from=10&size=10&pretty'

(2)按日期升序排列,返回前10项结果

curl '172.16.1.127:9200/get-together/_search?sort=date:asc&pretty'

(3)按日期升序排列,返回前10项结果中title、date的两个字段

curl '172.16.1.127:9200/get-together/_search?sort=date:asc&_source=title,date&pretty'

(4)请求匹配了所有标题中含有“elasticsearch”的文档(按小写比较),按日期升序返回

curl '172.16.1.127:9200/get-together/_search?sort=date:asc&q=title:elasticsearch&pretty'

3. 基于请求主体的搜索请求

        前面的搜索请求都是基于URL的。当执行更多高级搜索的时候,采用基于请求主体的搜索会拥有更多的灵活性和选择性。ES推荐使用基于请求主体的搜索请求。

(1)返回第2页的10个结果

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match_all": {}
  },
  "from": 10,
  "size": 10
}'

(2)返回指定字段

# 只返回name和date字段
curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match_all": {}
  },
  "_source": [
    "name",
    "date"
  ]
}'

(3)_source中使用通配符返回字段

# 返回location开头的字段和日期字段,但不返回location.geolocation字段
curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match_all": {}
  },
  "_source": {
    "include": [
      "location.*",
      "date"
    ],
    "exclude": [
      "location.geolocation"
    ]
  }
}'

(4)结果排序

# 类似于SQL中的order by created_on asc, name desc, _score
curl -XPOST "172.16.1.127:9200/get-together/_mapping/_doc?pretty" -H 'Content-Type: application/json' -d'
{
  "properties": {
    "name": {
      "type": "text",
      "fielddata": "true"
    }
  }
}'

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "created_on": "asc"
    },
    {
      "name": "desc"
    },
    "_score"
  ]
}'

(5)综合搜索基础模块

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match_all": {}
  },
  "from": 0,
  "size": 10,
  "_source": [
    "name",
    "organizer",
    "description"
  ],
  "sort": [
    {
      "created_on": "desc"
    }
  ]
}'

        类似于如下SQL查询:

select name, organizer, description
  from get-together
 order by created_on desc
 limit 0, 10;

        注意,如果在返回结果中某些字段的值为null,缺省在ES返回的_source中根本就不会出现该字段名称,这点与SQL是不同的。

4. 回复的结构

        下面看一下ES搜索返回的数据结构。

curl '172.16.1.127:9200/_search?q=title:elasticsearch&_source=title,date&pretty'

        结果返回:

{
  "took" : 13,                                       # 查询执行所用的毫秒数
  "timed_out" : false,                               # 是否超时
  "_shards" : {
    "total" : 28,                                    # 搜索的分片数
    "successful" : 28,                               # 成功的分片数
    "skipped" : 0,                                   # 跳过的分片数
    "failed" : 0                                     # 失败的分片数
  },
  "hits" : {
    "total" : 7,                                     # 匹配的文档数
    "max_score" : 1.0128567,                         # 最高文档得分
    "hits" : [                                       # 命中文档的数组
      {
        "_index" : "get-together",                   # 文档所属索引
        "_type" : "_doc",                            # 文档所属类型
        "_id" : "103",                               # 文档ID
        "_score" : 1.0128567,                        # 相关性得分
        "_routing" : "2",                            # 文档所属的分片号
        "_source" : {                                # 请求的_source字段
          "date" : "2013-04-17T19:00",
          "title" : "Introduction to Elasticsearch"
        }
      },
      {
        "_index" : "get-together",
        "_type" : "_doc",
        "_id" : "105",
        "_score" : 1.0128567,
        "_routing" : "2",
        "_source" : {
          "date" : "2013-07-17T18:30",
          "title" : "Elasticsearch and Logstash"
        }
      },
      ...
    ]
  }
}

        如果没有存储文档的_source或者是fields,那么将无法从ES中获取数值!

二、查询和过滤器

        查询和过滤器功能上类似于SQL查询中的where子句,都是起到按查询条件筛选文档的作用,但它们在评分就机制和搜索行为的性能上有所不同。不像查询会为特定的词条计算得分,搜索的过滤器只是为“文档是否匹配这个查询”,返回简的“是”或“否”的答案。图2展示了查询和过滤器之间的主要差别。

图2 由于不计算得分,过滤器所需的处理更少,并且可以被缓存

        由于这个差异,过滤器可以比普通的查询更快,而且还可以被缓存。

1. match

(1)match_all
        匹配所有文档,类似于SQL中的无where条件查询。

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match_all": {}
  }
}'

        在ES6中,match_all查询返回文档的_score都为1.0。

(2)match
        匹配字段条件,类似于SQL中的where column='xxx'。下面的查询搜索标题中有“hadoop”字样的文档:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match": {
      "title": "hadoop"
    }
  }
}'

        match查询不区分大小写。在进行匹配时,词条和输入的文本都被转换成小写进行比较。match查询返回文档的_score相关性得分。

        默认情况下,match查询使用OR操作符。例如,如果搜索文本“Elasticsearch Denver”,ES会搜索“Elasticsearch OR Denver”,同时匹配“Elasticsearch Amsterdam”和“Denver Clojure”。下面的查询搜索同时包含“Elasticsearch”和“Denver”关键词的结果:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match": {
      "name": {
        "query": "Elasticsearch Denver",
        "operator": "and"
      }
    }
  }
}'

(3)match_phrase
        下面的查询搜索name字段中包含“enterprise london”短语,并且“enterprise”和“london”之间允许包含一个单词的文档:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match_phrase": {
      "name": {
        "query": "enterprise london",
        "slop": 1
      }
    }
  },
  "_source": [
    "name",
    "description"
  ]
}'

(4)phrase_prefix
        下面的例子中,phrase_prefix使用的是“Elasticsearch den”,ES使用“den”文本进行前缀匹配,查找所有name字段,发现那些以“den”开始的取值。max_expansions设置最大前缀扩展数量。由于产生的结果可能是个很大的集合,需要限制扩展的数量。

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "match_phrase_prefix": {
      "name": {
        "query": "Elasticsearch den",
        "max_expansions": 1
      }
    }
  },
  "_source": [
    "name"
  ]
}'

(5)multi_match
        可以在多个字段中匹配多个词条,类似于SQL中的where name like '%elasticsearch%' or name like '%hadoop%' or 'description' like '%elasticsearch%' or 'description' like '%hadoop%':

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "multi_match": {
      "query": "elasticsearch hadoop",
      "fields": [
        "name",
        "description"
      ]
    }
  }
}'

        就像match查询可以转化为phrase查询或者phrase_prefix查询,multi_match查询可以转化为phrase查询或者phrase_prefix查询,方法是指定type键。除了可以指定搜索字段是多个而不是单独一个之外,可以将multi_match查询当做match查询使用。

2. term

        term查询和过滤器可以指定需要搜索的文档字段和词条。注意,term搜索的词条是没有经过分析的,文档中的词条必须要精确匹配才能作为结果返回。

(1)term查询

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "term": {
      "tags": "elasticsearch"
    }
  },
  "_source": [
    "name",
    "tags"
  ]
}'

(2)term过滤器
        和term查询相似,可以使用term过滤器来限制结果文档,使其包含特定的词条,不过无须计算得分。

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "bool": {
      "filter": {
        "term": {
          "tags": "elasticsearch"
        }
      }
    }
  }
}'

(3)terms查询
        和term查询类似,terms查询可以搜索某个文档字段中的多个词条。例如下面的查询搜索标签含有“jvm”或“hadoop”的文档。

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "terms": {
      "tags": [
        "jvm",
        "hadoop"
      ]
    }
  },
  "_source": [
    "name",
    "tags"
  ]
}'

        对于和查询匹配的文档,可以强制规定每篇文档中匹配词条的最小数量,为了实现这一点需要指定minimum_should_match参数。

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "bool": {
      "minimum_should_match": 2,
      "must": {
        "terms": {
          "tags": [
            "jvm",
            "hadoop",
            "lucene"
          ]
        }
      }
    }
  }
}'

3. query_string

        下面的查询搜索包含“nosql”的文档。两个查询等价,前者使用URL执行,后者使用请求主体发送:

curl -XGET '172.16.1.127:9200/get-together/_search?q=nosql&pretty'
curl -XPOST '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "query_string": {
      "query": "nosql"
    }
  }
}'

        默认情况下,query_string查询将会搜索_all字段,该字段是由所有字段组合而成。可以通过default_field设置字段:

curl -XPOST '172.16.1.127:9200/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "query_string": {
      "default_field": "description",
      "query": "nosql"
    }
  }
}'

        也可以在多个字段上执行查询,此时应使用fields:

curl -XPOST '172.16.1.127:9200/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "query_string": {
      "fields": ["description", "tags"],
      "query": "nosql"
    }
  }
}'

        下面的查询搜索所有名称中含有“nosql”的文档,但是排除了那些描述中有“mongodb”的结果:

curl -XPOST '172.16.1.127:9200/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "query_string": {
      "query": "name:nosql AND -description:mongodb"
    }
  }
}'

        可以使用如下命令查询所有于1999年到2001年期间创建的标签为搜索或lucene的文档:

curl -XPOST '172.16.1.127:9200/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "query_string": {
      "query": "(tags:search OR tags:lucene) AND (created_on:[1999-01-01 TO 2001-01-01])"
    }
  }
}'

        针对query_string查询,建议的替换方案包括term、terms、match或multi_match查询。


三、复合查询

1. bool查询

        bool查询允许在单独的查询中组合任意数量的查询,指定的查询子句表明哪些部分是必须(must)匹配、应该(should)匹配或者是不能(must_not)匹配上ES索引里的数据。

        下面的例子查询attendees字段中必须包含“david”,也应该包含“clint”和“andy”,并且date必须大于等于'2013-06-30'。minimum_should_match表示最小的should子句匹配数,满足这个数量的文档才能作为结果返回。minimum_should_match的默认值有一些隐藏的特性。如果指定了must子句,minimum_should_match的默认值为0。如果没有指定must子句,默认值为1。

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "attendees": "david"
          }
        }
      ],
      "should": [
        {
          "term": {
            "attendees": "clint"
          }
        },
        {
          "term": {
            "attendees": "andy"
          }
        }
      ],
      "must_not": [
        {
          "range": {
            "date": {
              "lt": "2013-06-30T00:00"
            }
          }
        }
      ],
      "minimum_should_match": 1
    }
  }
}'

可以使用下面的语句改写这个查询,它在逻辑上与上个查询等价,但只包含must一个bool查询选项,更短小。
curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "attendees": "david"
          }
        },
        {
          "range": {
            "date": {
              "gte": "2013-06-30T00:00"
            }
          }
        },
        {
          "terms": {
            "attendees": [
              "clint",
              "andy"
            ]
          }
        }
      ]
    }
  }
}'

2. bool过滤器

        bool过滤器和bool查询的表现基本一致。只是它组合的是过滤器。bool过滤器不支持minimum_should_match属性,而是使用了默认值1。

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "bool": {
      "filter": {
        "bool": {
          "must": [
            {
              "term": {
                "attendees": "david"
              }
            }
          ],
          "should": [
            {
              "term": {
                "attendees": "clint"
              }
            },
            {
              "term": {
                "attendees": "andy"
              }
            }
          ],
          "must_not": [
            {
              "range": {
                "date": {
                  "lt": "2013-06-30T00:00"
                }
              }
            }
          ]
        }
      }
    }
  }
}'

四、其它查询和过滤器

1. range查询和过滤器

(1)查询

# where created_on > 2012-06-01 and created_on < 2012-09-01
curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "range": {
      "created_on": {
        "gt": "2012-06-01",
        "lt": "2012-09-01"
      }
    }
  }
}'

(2)过滤器

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "bool": {
      "filter": {
        "range": {
          "created_on": {
            "gt": "2012-06-01",
            "lt": "2012-09-01"
          }
        }
      }
    }
  }
}'

        range查询支持字符串范围,如果想搜索name在“c”和“e”之间的文档,可以使用下面的搜索:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "range": {
      "name": {
        "gt": "c",
        "lt": "e"
      }
    }
  }
}'

        使用range查询时,应仔细考虑一下过滤器是否为更好的选择。由于在查询范围之中的文档是二元匹配(“是的,文档在范围之中”或者“不是,文档不在范围之中”),range查询不必是查询。为了获得更好的性能,它应该是过滤器。如果不确定是查询还是过滤器,请使用过滤器。在99%的用例中,使用range过滤器是正确的选择。

2. prefix查询和过滤器

        prefix查询和过滤器允许根据给定的前缀来搜索词条。这里前缀在搜索之前是没有经过分析的。例如,为了在索引中搜索title为“liber”开头的全部文档,使用下面的查询:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "prefix": {
      "title": "liber"
    }
  }
}'

        类似地也可以使用过滤器:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d '
{
  "query": {
    "bool": {
      "filter": {
        "prefix": {
          "title": "liber"
        }
      }
    }
  }
}'

        由于前缀搜索没有经过分析,前缀查询或过滤器是大小写敏感的。

3. wildcard查询

# 创建索引,添加两个文档
curl -XPOST '172.16.1.127:9200/wildcard-test/_doc/1?pretty' -H 'Content-Type: application/json' -d '
{
  "title":"The Best Bacon Ever"
}'

curl -XPOST '172.16.1.127:9200/wildcard-test/_doc/2?pretty' -H 'Content-Type: application/json' -d '
{
  "title":"How to raise a barn"
}'

# “ba*n”会匹配bacon和barn
curl '172.16.1.127:9200/wildcard-test/_search?pretty' -H 'Content-Type: application/json' -d'
{
  "query": {
    "wildcard": {
      "title": {
        "wildcard": "ba*n"
      }
    }
  }
}'

# “ba?n”只会匹配barn,不会匹配bacon
curl '172.16.1.127:9200/wildcard-test/_search?pretty' -H 'Content-Type: application/json' -d'
{
  "query": {
    "wildcard": {
      "title": {
        "wildcard": "ba?n"
      }
    }
  }
}'

        使用这种查询时,需要注意的是wildcard查询不像match等其它查询那样轻量级。查询词条中越早出现通配符(*或?),ES就需要做更多的工作来进行匹配。

4. exists过滤器

        exists过滤器允许过滤文档,只查找那些在特定字段有值的文档:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d'
{
  "query": {
    "bool": {
      "filter": {
        "exists": {
          "field": "location_event.geolocation"
        }
      }
    }
  }
}'

5. missing过滤器

        missing过滤器可以搜索字段里没有值,或者是映射时指定了默认值的文档(也叫做null值,即映射里null_value)。为了搜索缺失reviews字段的文档,可以使用下面的过滤器:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d'
{
  "query": {
    "bool": {
      "must_not": {
        "exists": {
          "field": "reviews"
        }
      }
    }
  }
}'

6. 将任何查询转变为过滤器

        ES允许通过query过滤器将任何查询转化为过滤器。例如,有个query_string查询搜索匹配“Elasticsearch”的名字,可以使用如下搜索将其转变为过滤器:

curl '172.16.1.127:9200/get-together/_search?pretty' -H 'Content-Type: application/json' -d'
{
  "query": {
    "bool": {
      "filter": {
        "query_string": {
          "query": "name:\"Elasticsearch\""
        }
      }
    }
  }
}'

五、为任务选择最好的查询

        表1为ES的常用案例中使用哪些查询的指南。

用例

使用的查询类型

想从类似Google的界面接受用户的输入,然后根据这些输入搜索文档

如果想支持+/-或者在特定字段中搜索,就是用simple_query_string查询

想将输入作为词组并搜索包含这个词组的文档,词组中的单词也许包含一些间隔(slop)

要查找和用户搜索相似的词组,使用match_phrase查询,并设置一定量的slop

想在not_analyzed字段中搜索单个关键字,并完全清楚这个词应该是如何出现的

使用term查询,因为查询的词条不会被分析

希望组合许多不同的搜索请求或者不同类型的搜索,创建一个单独的搜索来处理它们

使用bool查询,将任意数量的子查询组合到一个单独的查询

希望在某个文档中的多个字段搜索特定的单词

使用multi_match查询,它和match查询的表现类似,不过是在多个字段上搜索

希望通过一次搜索返回所有的文档

使用match_all查询,在一次搜索中返回全部文档

希望在字段中搜索一定取值范围内的值

使用range查询,搜索取值在一定范围内的文档

希望在字段中搜索特定字符串开头的取值

使用prefix查询,搜索以给定字符串开头的词条

希望根据用户已经输入的内容,提供单个关键词的自动完成功能

使用prefix查询,发送用户已经输入的内容,然后获取以此文本开头的匹配项

希望搜索特定字段没有取值的所有文档

使用missing过滤器过滤出缺失某些字段的文档

                                                               表1 常用案例中使用哪些类型的查询

展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。

实用主义学Python(小白也容易上手的Python实用案例)

12-24
原价169,限时立减100元! 系统掌握Python核心语法16点,轻松应对工作中80%以上的Python使用场景! 69元=72讲+源码+社群答疑+讲师社群分享会  【哪些人适合学习这门课程?】 1)大学生,平时只学习了Python理论,并未接触Python实战问题; 2)对Python实用技能掌握薄弱的人,自动化、爬虫、数据分析能让你快速提高工作效率; 3)想学习新技术,如:人工智能、机器学习、深度学习等,这门课程是你的必修课程; 4)想修炼更好的编程内功,优秀的工程师肯定不能只会一门语言,Python语言功能强大、使用高效、简单易学。 【超实用技能】 从零开始 自动生成工作周报 职场升级 豆瓣电影数据爬取 实用案例 奥运冠军数据分析 自动化办公:通过Python自动化分析Excel数据并自动操作Word文档,最终获得一份基于Excel表格的数据分析报告。 豆瓣电影爬虫:通过Python自动爬取豆瓣电影信息并将电影图片保存到本地。 奥运会数据分析实战 简介:通过Python分析120年间奥运会的数据,从不同角度入手分析,从而得出一些有趣的结论。 【超人气老师】 二两 中国人工智能协会高级会员 生成对抗神经网络研究者 《深入浅出生成对抗网络:原理剖析与TensorFlow实现》一书作者 阿里云大学云学院导师 前大型游戏公司后端工程师 【超丰富实用案例】 0)图片背景去除案例 1)自动生成工作周报案例 2)豆瓣电影数据爬取案例 3)奥运会数据分析案例 4)自动处理邮件案例 5)github信息爬取/更新提醒案例 6)B站百大UP信息爬取与分析案例 7)构建自己的论文网站案例
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值